
 1 

Stresses and Surcharge Stresses due to Plane Loading on 

Skewed Footings 
 

By Farid A. Chouery
1
, P.E., S.E. 

All Rights Reserved © 2006 

 

Introduction: 

The distribution of stresses in earth masses is often estimated using the corresponding distribution in a 

linear elastic medium with boundary conditions approximating those in the problem of interest [7]. In 

some cases, elastic theory is also used to estimate displacements as well. Although soils do not behave 

as linear elastic materials, the rationale for this practice has been the availability of the solutions to 

problems for which the boundary conditions corresponded reasonably well to the boundary conditions 

for foundation engineering problems, as well as the lack of generally accepted alternatives. 

Experimental and analytical studies have been carried out to investigate the degree in which the results 

of elastic theory are applicable to earth masses. Perloff (1975)[11] and Harr (1977)[5] have 

summarized the conclusions of these investigations. 

 

For the near edge or end of the footing area, it might be expected that certain amount of attenuation of 

stress with depth would occur, because no stress is applied beyond the edge. Similarly, with a loaded 

footing area of limited size, it might be expected that the applied stress at the surface would dissipate 

rather rapidly with depth. 

 

For shallow foundation problems, solutions from the theory of elasticity or approximate methods are 

most commonly used to evaluate stresses with depth under areas of limited extent. Frequently used 

solutions from the theory of elasticity, usually in the form of convenient charts, can be found in 

Newmark (1942) [10], Fadum (1948) [2], Foster and Ahlvin (1954) [3], Scott (1963) [14], Harr (1966) 

[6], Poulos and Davis (1974) [13], Perloff (1975) [11], Perloff and Baron (1976) [12], Holtz and 

Kocacs (1981) [8], and U.S. Navy (1982) [21], among others. In some cases, the equations are given 

and solutions to often-used problems can be readily programmed on a microcomputer or 

programmable calculator, As these solutions are available in most design offices, they will not be 

presented here.  

 

Point Load: 

The most important original solution was given by Boussinesq (1885) [1] for the distribution of 

stresses within a linear elastic half-space resulting from a point load applied normal to the surface, 

illustrated in Fig. 1. The results obtained were 
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Where µ is Poisson’s ratio and other quantities in the equations are defined in Fig. 1. These stresses are 
the stresses which would occur in a weightless linear elastic medium. Preexisting stress due to the 

weight of the material must be superimposed upon these. 

 

 
Fig. 1 Stresses in elastic half-space due to point load at the surface. 

 

 

Rewriting the equation in terms of x and y using: 
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ασασσ α
22 sincos += rx    ,  ασασσ α

22 cossin += ry    ,   αασστ α cossin)( −= rxy  

 

αττ cosrzxz =  and αττ sinrzyz = , gives two sets of equations: 

 

Set #1 
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Set #2 
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The Boussinesq stresses becomes Set#1 +Set#2. Part of the reason of setting the solution in this 

manner, is when µ ≈ .5 the second set disappears. An example µ = .5 for rubber. 
Deriving the Stresses for Plane Loading on Footings:  
To integrate Boussinesq equations using superimposition we have basically three types of loadings as 

in Fig. 2, 3, 4 and 5. The basic idea is to translate the point load equations in the x axis by ξ and in the 

y axis by λ ,as seen in the figures, then integrate with respect to λξ  and over the footing 2a by 2b 
from c–a to c+a and d–b to d+b where the center of the footing is located at the coordinate (c, d, 0). 

 

 
Fig. 2 Uniform Load q on 2b x 2a Footing 

 

 
Fig. 3 Plane Load for p1 in x on 2b x 2a Footing 
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Fig. 4 Plane Load for p2 in y on 2b x 2a Footing 
 

 

 
Fig. 5 Plane Load on 2b x 2a Footing 

 

 

 

Thus we have three functions to integrate: 

 

bdbdacacqz +≤≤−+≤≤−= λξ       and                          1  

bdbdacaccpz +≤≤−+≤≤−−= λξξ       and             )(12  

bdbdacaccpz +≤≤−+≤≤−−= λξλ       and             )(13   ………………………… (15) 
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And the three integrations over Boussinesq equations with respect to λξ  and become: 
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Where iσ  is the Boussinesq stress equations 6 to 14 in x, y and z respectively and i represents the x, y, z 

stress components and directions. Also the x is replaced by ξ−x  and the y is replaced by λ−y due to 

the translation of the axis. Now, translate the x axis back by -c and the y axis back by -d and the center 
of the footing becomes the origin of the axis. The equations become 
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Now we change variable by letting λλξξλλξξ dddddc ==+=+=    and    so       and   and the 

equations become: 
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Finally we let dydvdxduyvxu ==−=−=       and          so         and    λξ and the equations become 

much simpler to integrate and to keep track, and they are: 
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The total stress becomes 654321 iiiiiiit σσσσσσσ +++++= , where the following equations 33 to 60 

has to be evaluated from  axu +=   to  axu −=  first then from byv +=   to  byv −=  second the 

result becomes ),,(),,(),,(),,( zbyaxzbyaxzbyaxzbyax ikikikikit −−+−+−+−−++= σσσσσ , 

and k = 1 to 6. 
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                                                                                                           ………………………………. (60) 

 

 

 

Because of the amount of integrations was immense setting up a verification spread sheet was needed. 

(verify.xls). The solution was verified using numerical differentiations on the solution to (equation 33 

through 60) and the result is checked to mach Boussinesq equations 6 through 14. The result is 

summarized in the spread sheet stress.xls for the stresses. 

 

Surcharge Stresses for Plane Loading on Skewed Footings: 

Re-examining the Boussinesq equations for horizontal stress due to concentrated load on the surface  

as shown in Fig. 6 and given in equations 6 through 14. However, if AB represents the boundary 

between soil and wall, the deformation along this line, ∆, is usually much smaller than attained in the 

interior of soil mass. Mindlin (1936) [9] has shown that consequently would be about twice the amount 

computed by equations 6 through 14. This derivation is usually done using mirror image loading  

 
Fig. 6 Earth pressure due to point load. 
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Fig. 7 Earth pressure on wall due to point load using mirror images. 

 

 

analysis as in Fig. 7. By removing the shaded area in the left side on Fig. 7 the solution is obtained as 

twice the loading with ∆ = 0. 

 

Spangler (1938) [16] and Gerber (1929) [4] verified experimentally Mindlin mirror image solution. 

More discussion can be found in Terzaghi & Peck (1967) [18] and Spangler & Handy (1973) [15] 

books. Recommendations by the Sheet Piling Design Manual [17], Terzaghi (1954) [19], Holl (1940) 

[13] and Spangler & Handy (1973) [15] has been using Boussinesq equations with µ = 0.5. This 
assumption of allowing no tension in the material, will be shown can be unsafe for footings. It may be 

ok in some cases to ignore the Set#2 equations 12, 13 and 14 in matching certain experiments. 

However, it is a definite misleading assumption when it comes to generalizing for all types of soils and 

conditions. In the case of Teng (1962) [20] for a strip load and in the case of line loads, Set#2 

disappears in the integrations for σx without having to have µ = 0.5 and their solution is correct. Wu 

(1975) [22] propose to use Boussinesq equations as is without setting µ = 0.5. It is known that 
 

10
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+
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k

k
µ    ……………………………………………………………………………………… (61) 

 

where k0 is the at rest coefficient and there is no reason not to use a value for µ and investigate the 
difference.  
 

For the general solution of a skewed footing by an angle θ from the x axis as in Fig. 8 it is as follows: 

 
Fig. 8 Earth pressure on wall due to footing load using mirror images 
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See surcharge.xls file for the surcharge stresses. To show the comparison when using µ = 0.5, a real 
life problem will be used. The project was a shoring for a tunnel used as an exit on the I90 freeway. 

The exit name is I90 to Mercer Island tunnel. Above the tunnel there is an overpass. It is the Island 

Crest Way Bridge with a skewed footing making θ = 51.5 degrees from the wall see photo FIG 11. The 

footing size is 127.72 ft by 19 ft, µ = 0.28, q = 5.45 ksf, p1 = -0.5 kcf, p2 = 0, we examine the stress in 

the z direction first for the coordinate x = -70.86 ft and y = 3 ft.  Fig 9 shows the comparison. We find 

in this case when µ = 0.5 the maximum stress was 1.595 ksf and when µ = 0.28 the maximum stress 

was 1.219 ksf it overestimated the maximum stress by 31%.  
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Fig. 9 - I90 to Mercer Island Shoring Wall at Tunnel (x = -70.86 ft, y = 3 ft, θ = 51.5

o
) 

 

 

Now we examine the stress in the z direction for the coordinate x = -78.86 ft and y = -4 ft.  Fig 10 
shows the comparison. We find in this case when µ = 0.5 the maximum stress was 0.496 ksf and when 

µ = 0.28 the maximum stress was .487 ksf it overestimated the maximum stress by 2% and also the 

stress at z = 0 is .226 ksf. In this situation the stresses on the wall are higher at the top adding a 
considerable moment on the wall. Hopefully this example sways engineers to investigate the proper µ 
and not ignore the Set#2 of the equations. Now it is true that when using the Set#2 of the equations one 

may have tension in the soil which it is normally set to zero if it is not of too great. In any case whether 

the designer choose µ = 0.5 so no tension is allowed or use the actual µ, all of the compressive 
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pressures must be taken into account and only common sense can be used for setting small tension 

stresses to zero, when it is close to zero. Ultimately, the designer must make the proper decision using 

the proper equations. For safety, it should be clear when using the above equations for footings the 

second set#2 must be taken into account. 
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Fig. 10 - I90 to Mercer Island Shoring Wall at Tunnel (x = -78.86 ft, y = -4 ft, θ = 51.5

o
) 
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Fig 11 - Island Crest Way Tunnel Exit from I90 East from Express Freeway 

Conclusion 

The solution for stresses due to a footing that has a plane loading equation are found by integrating 

Boussinesq equations at any point in the media. The solution is also extended to find the surcharge 

stresses due of a skewed footing on a wall. The result shows that ignoring the material properties can 

be unsafe and the designer must examine both conditions in the above equations when the values of the 

Poisson’s ration 0.5 and the actual. 
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